Factorization of Almost Periodic Matrix Functions
نویسندگان
چکیده
منابع مشابه
Almost periodic factorization of certain block triangular matrix functions
Let G(x) = [ eIm 0 c−1e−iνx + c0 + c1e e−iλxIm ] , where cj ∈ Cm×m, α, ν > 0 and α+ ν = λ. For rational α/ν such matrices G are periodic, and their Wiener-Hopf factorization with respect to the real line R always exists and can be constructed explicitly. For irrational α/ν, a certain modification (called an almost periodic factorization) can be considered instead. The case of invertible c0 and ...
متن کاملFactorization of Almost Periodic Matrix Functions of Several Variables and Toeplitz Operators
We study connections between operator theoretic properties of Toeplitz operators acting on suitable Besikovitch spaces and factorizations of their symbols which are matrix valued almost periodic functions of several real variables. Among other things, we establish the existence of a twisted canonical factorization for locally sectorial symbols, and characterize one-sided invertibility of Toepli...
متن کاملMultiblock Problems for Almost Periodic Matrix Functions of Several Variables
In this paper we solve positive and contractive multiblock problems in the Wiener algebra of almost periodic functions of several variables. We thus generalize the classical four block problem that appears in robust control in many ways. The necessary and sufficient conditions are in terms of appropriate Toeplitz (positive case) and Hankel operators (contractive case) on Besikovitch space. In a...
متن کاملAlmost periodic functions, constructively
Almost periodic functions form a natural example of a non-separable normed space. As such, it has been a challenge for constructive mathematicians to find a natural treatment of them. Here we present a simple proof of Bohr’s fundamental theorem for almost periodic functions which we then generalize to almost periodic functions on general topological groups.
متن کاملOn Hartman Almost Periodic Functions
In this note we consider multi-dimensional Hartman almost periodic functions and sequences, defined with respect to different averaging sequences of subsets in R or Z. We consider the behavior of their Fourier-Bohr coefficients and their spectrum, depending on the particular averaging sequence, and we demonstrate this dependence by several examples. Extensions to compactly generated, locally co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1995
ISSN: 0022-247X
DOI: 10.1006/jmaa.1995.1230